Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions

نویسندگان

  • Koottungal Revi Arun
  • Marcus Kraft
  • Mária Lukácová-Medvid'ová
  • Phoolan Prasad
چکیده

We present a generalization of the finite volume evolution Galerkin scheme [17, 18] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Comparison of Evolution Galerkin and Discontinuous Galerkin Schemes

The aim of this paper is to compare some recent numerical schemes for solving hyperbolic conservation laws. We consider the flux vector splitting finite volume methods, finite volume evolution Galerkin scheme as well as the discontinuous Galerkin scheme. All schemes are constructed using time explicit discretization. We present results of numerical experiments for the shallow water equations fo...

متن کامل

A Discontinuous Galerkin Moving Mesh Method for Hamilton-Jacobi Equations

where x = (x1, . . . , xd) ∈ IR , t > 0. HJ equations arise in many practical areas such as differential games, mathematical finance, image enhancement and front propagation. It is well known that solutions of (1) are Lipschitz continuous but derivatives can become discontinuous even if the initial data is smooth. There is a close relation between HJ equations and hyperbolic conservation laws. ...

متن کامل

A Framework for Discontinuous Fluctuation Distribution

The concept of fluctuation distribution was originally proposed nearly 25 years ago [6] as a potential alternative to flux-based finite volume schemes for approximating hyperbolic conservation laws. Major advances during the intervening period have provided genuinely multidimensional schemes which can achieve very high orders of accuracy without spurious oscillations, for both steady state and ...

متن کامل

On the convergence of high resolution methods with multiple time scales for hyperbolic conservation laws

A class of finite volume methods based on standard high resolution schemes, but which allows spatially varying time steps, is described and analyzed. A maximum principle and the TVD property are verified for general advective flux, extending the previous theoretical work on local time stepping methods. Moreover, an entropy condition is verified which, with sufficient limiting, guarantees conver...

متن کامل

A Finite Element, Multiresolution Viscosity Method for Hyperbolic Conservation Laws

It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flow. It is also well known that naively adding artificial diffusion to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant approach, referred to as spectral viscosity method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009